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Abstract

Hilbert Spaces of Holomorphic Functions: Zero Sets, Invariant Subspaces, and

Toeplitz Operators

by

Rick Scott Chartrand

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Donald Sarason, Chair

Several problems are considered in the setting of Hilbert spaces of holomorphic func-

tions on the unit disc. In Chapter 1, the main result is a characterization of the

zero sets of a large class of such spaces. The characterization is in terms of Gram

matrices of reproducing kernels associated with the points of a sequence in the disc.

The construction involved in the proof is then applied to a smaller class of spaces to

characterize the elements of a space having a fixed inner function as a factor. Spe-

cializing to the case of the Dirichlet space, the construction gives a characterization

of the boundary-zero sets.

This construction gives rise to a wandering vector of the shift operator of mul-

tiplication by z. In the case of the Dirichlet space and certain generalizations, the

subspaces invariant under the shift operator are generated by wandering vectors.

Furthermore, the wandering subspace of an invariant subspace is one-dimensional.

Therefore, the problem of describing the invariant subspaces of Dirichlet-type spaces

reduces to the problem of describing the wandering vectors. For invariant subspaces

of the Dirichlet space determined by zero sets, inner divisors, and boundary-zero sets,

the aforementioned construction produces a wandering vector and generator. It is not

known whether other invariant subspaces of the Dirichlet space exist.

In Chapter 2, variants of the classical Toeplitz operators on H2 are studied.

A characterization is obtained for the bounded, harmonic symbols giving rise to a



2

bounded Toeplitz operator on a Dirichlet-type space. The relationship between the

characterizing condition and multipliers of the holomorphic and harmonic Dirichlet

spaces is examined.

Professor Donald Sarason
Dissertation Committee Chair
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Chapter 1

Zero Sets and Invariant Subspaces

Let f be a holomorphic function on a region G. If E is the set of zeroes of f , then

E does not have a limit point in G, unless f = 0 on all of G.

Conversely, let E be a subset of G without a limit point in G. Then there is a

function f holomorphic in G having E as its set of zeroes. Furthermore, f can be

chosen to have a zero of prescribed multiplicity at each z ∈ E.

Thus, the problem of characterizing the zero sets of holomorphic functions on a

region is completely solved. The situation changes, however, if we consider smaller

sets of functions.

Definition 1.1. Let H be a set of holomorphic functions on a region G; let E ⊂ G.

Then E is a zero set of H if there is f ∈ H, not identically zero, having E as its set

of zeroes.

A sequence {zn} in G will be called a zero set of H if there is nonzero f ∈ H

having a zero at each zn of multiplicity equal to the number of times the point zn

appears in the sequence, and having no other zeroes.

Example 1.2. If H(G) denotes the set of holomorphic functions on the region G,

then E ⊂ G is a zero set of H(G) iff E does not have a limit point in G.

Another example is the following classical result.

Theorem 1.3. Let 0 < p ≤ ∞. A sequence {zn} in D is a zero set of Hp(D) iff∑
(1− |zn|) <∞.
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The condition of the theorem is known as the Blaschke condition; a sequence

satisfying the Blaschke condition is a Blaschke sequence. If {zn} is a (finite or infinite)

Blaschke sequence, then {zn} is a zero set of the Blaschke product

λ
∏
n

zn − z

1− znz

zn

|zn|
,

where λ is a unimodular constant, and zn/|zn| is to be interpreted as 1 if zn = 0.

Every Blaschke product belongs to Hp for every p ∈ (0,∞].

For the remainder of this chapter, H will denote a Hilbert space of holomorphic

functions on D satisfying the following hypotheses:

1. H contains the polynomials;

2. the shift operator Mz of multiplication by z is bounded on H; and

3. if f ∈ H and f(0) = 0, then there is g ∈ H such that f = zg.

Further assumptions about H will be made later in the chapter.

Definition 1.4. For w ∈ D and j = 0, 1, 2, . . ., the jth-order reproducing kernel at

w is a function kj
w ∈ H such that 〈f, kj

w〉 = f (j)(w) for all f ∈ H.

The existence of kj
w ∈ H is equivalent to the boundedness of the functional

f 7→ f (j)(w) on H. If it exists, it is unique.

Now, some examples.

Example 1.5. The Hardy space H2 can be regarded as the set of all f ∈ H(D) such

that
∑
|f̂(n)|2 is finite, where f̂(n) is the power-series coefficient of zn. The inner

product is given by 〈f, g〉H2 =
∑
f̂(n)ĝ(n). Using this formula for the inner product,

the power series for the reproducing kernels can be calculated:

kj
w(z) =

∞∑
n=j

n!

(n− j)!
wn−jzn =

j! zj

(1− wz)j+1
.

Example 1.6. The Bergman space L2
a is the subspace of L2(D) (with respect to

normalized Lebesgue measure) consisting of the holomorphic functions. Using the

formula 〈f, g〉L2
a

=
∑

(n+ 1)−1f̂(n)ĝ(n), the reproducing kernels are found:

kj
w(z) =

∞∑
n=j

(n+ 1)!

(n− j)!
wn−jzn =

(j + 1)! zj

(1− wz)j+2
.
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Example 1.7. The Dirichlet space D consists of those f ∈ H(D) having f ′ ∈ L2
a;

the norm is given by ‖f‖2
D = ‖f‖2

H2 + ‖f ′‖2
L2

a
. The quantity ‖f ′‖2

L2
a

=
∫

D |f
′|2dA =∑

n|f̂(n)|2 is called the Dirichlet integral of f , denoted D(f). The formula for the

Dirichlet integral in terms of the power-series coefficients of f makes it clear that

D ⊂ H2. There is also a formula, due to J. Douglas [8], in terms of integrals over ∂D:∫
D
|f ′|2 dA =

∫
∂D

∫
∂D

∣∣∣∣f(eiθ)− f(eit)

eiθ − eit

∣∣∣∣2 dt2π

dθ

2π
. (1.1)

The inner integral is the local Dirichlet integral of f at eiθ, denoted Deiθ(f), and can

be regarded as a function on ∂D.

As above, the reproducing kernels can be calculated:

kj
w(z) =

∞∑
n=j

n!

(n+ 1)(n− j)!
wn−jzn = zj d

j

dtj

(
1

t
log

1

1− t

)
(wz).

Example 1.8. Let µ be a finite, positive, Borel measure on ∂D. The Dirichlet-

type space D(µ) is the set of f ∈ H(D) having a local Dirichlet integral that is

integrable with respect to µ. Equation (1.1) says that D = D( dθ
2π

). The norm is

given by ‖f‖2
µ = ‖f‖2

H2 +
∫
Dλ(f)dµ(λ). That D(µ) ⊂ H2 is shown in [14] (also see

Corollary 2.4).

The space D(µ) differs from the previous examples in that the powers of z are not

generally orthogonal. This makes it difficult to show existence of reproducing kernels

by exhibiting them explicitly. However, the fact that H2 has reproducing kernels

implies their existence for the subset D(µ):

|f (j)(w)| ≤ C‖f‖H2 ≤ C‖f‖µ,

where C is a constant not depending on f . From the boundedness of the functional

on D(µ) of evaluation of the jth derivative at w follows the existence of kj
w ∈ D(µ).

1.1 Zero Sets in D

Let {zn} be a sequence in D. The goal of this section is to produce a necessary

and sufficient condition for {zn} to be a zero set of H.
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For a moment it will be convenient to let {αj} be the subsequence of all the

distinct points of the sequence {zn}. For each j, let mj be the number of times αj

appears in the sequence {zn}. Since no sequence with a limit point in D can be a zero

set of H, we may assume that each mj is finite. The point 0 may or may not appear

in {zn}; let m ≥ 0 be the number of times that 0 does appear.

In addition to assumptions (1)–(3) above, for each j assume that H has repro-

ducing kernels at αj of orders 0, 1, . . ., and mj − 1. Assume further that H has a

reproducing kernel at 0 of order m (if 0 is some αj, this assumes one order more than

previously).

Let M be the subspace of H of functions having for all j a zero at αj of multiplicity

at least mj. What is in question in this section is whether M contains elements other

than the function 0. Assumption (3) about H guarantees that if M contains nonzero

elements, then M contains an element having a zero at z = 0 of multiplicity exactly

m (meaning no zero at all at z = 0 if m = 0). Hence, if km
0 ⊥ M, then M = {0}.

For notational simplicity, let {ϕn} enumerate the set of functions⋃
j{k0

αj
, . . . , k

mj−1
αj }, and let ψ = km

0 . For each n, let Gn be the n × n Gram ma-

trix {〈ϕj, ϕk〉}n
k,j=1.

Claim 1.9. The set {ϕ1, . . . , ϕn} is linearly independent in H.

Proof. Suppose λ1, . . . , λn ∈ C are such that
∑
λjϕj = 0. Then for all f ∈ H, the

relation ∑
λj〈f, ϕj〉 = 〈f,

∑
λjϕj〉 = 0 (1.2)

holds. However, each 〈f, ϕj〉 is the value of f or a derivative of f at some fixed

point. Unless all λj = 0, one can find a polynomial f not satisfying (1.2). Since

H contains all the polynomials, it must be that all λj = 0. Thus, {ϕ1, . . . , ϕn} is

linearly independent.

Since {ϕ1, . . . , ϕn} is linearly independent, Gn is invertible (for this and other

properties of Gram matrices, see [11]). For each n, let bn be the vector

(〈ϕ1, ψ〉, . . . , 〈ϕn, ψ〉)t. Let Sn be the number bt
nG

−1
n bn. Since Gn and G−1

n are,

in fact, positive definite matrices, as a result Sn is real and positive.
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It will be shown shortly that the sequence {Sn} is nondecreasing and has ‖ψ‖2 as

an upper bound.

Theorem 1.10. The subspace M is nontrivial iff limSn < ‖ψ‖2.

This theorem provides a characterization of those sequences that are contained in

a zero set of H. There are many spaces, such as the examples given above, in which

every subset of a zero set is a zero set. In such spaces, the theorem characterizes the

zero sets.

In the case where the points of {zn} are all distinct and nonzero, in many spaces

(including H2, L2
a, and D) the components of each bn are all 1, and ψ = k0

0 is the

constant 1 and has norm 1. In this case, the condition of the theorem is that the sum

of all the elements of G−1
n does not increase to 1 as n→∞.

Proof. The reproducing properties of the kernels {ϕ1, ϕ2, . . .} are such that a function

f ∈ H belongs to M iff 〈f, ϕn〉 = 0 for all n. Such an f will be sought among

differences of elements of M⊥ and constant multiples of ψ. Therefore, given n, consider

the system of equations in n complex variables c1, c2, . . . , cn given by

〈
n∑

j=1

cjϕj − λnψ, ϕk〉 = 0 for k = 1, 2, . . . , n, (1.3)

where λn is a constant to be specified later. By expanding out the inner product, the

system (1.3) can be expressed as the matrix equation Gncn = λnbn, where cn is the

n× 1 vector (c1, . . . , cn)t, and Gn and bn = (b1, . . . , bn)t are as defined above.

Since {ϕ1, . . . , ϕn} is linearly independent in H by the claim, the system (1.3)

has a unique solution cn = λnG
−1
n bn. Let f̃n =

∑n
j=1 cjϕj; let fn = f̃n − λnψ. By

construction, f̃n ∈ M⊥ and fn ⊥ {ϕ1, . . . , ϕn}.
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The norm of f̃n can be calculated:

‖f̃n‖2 = 〈
∑

j

cjϕj,
∑

k

ckϕk〉

=
∑

k

ck〈
∑

j

cjϕj, ϕk〉

=
∑

k

ckλn〈ψ, ϕk〉

= λn

∑
k

ckbk.

In order to simplify this and subsequent calculations, choose λn so that
∑
ckbk = 1.

This is accomplished by letting λn = 1/bt
nG

−1
n bn = 1/Sn, for then

∑
ckbk = bt

ncn =

bt
nλnG

−1
n bn = 1. Now we have that ‖f̃n‖2 = λn.

Claim 1.11. f̃n is the solution to the extremal problem

inf

{∥∥∥∥ n∑
j=1

γjϕj

∥∥∥∥ :
∑

γjbj = 1

}
.

Proof of Claim. If S is the span of {ϕ1, . . . , ϕn}, then the problem becomes

inf{‖ϕ‖ : ϕ ∈ S, 〈ϕ, ψ〉 = 1}.

If P is the orthogonal projection of H onto S, then a solution is given by ϕ =

Pψ/‖Pψ‖2. It is geometrically clear that this solution is unique. Since f̃n ∈ S and

f̃n − λnψ ⊥ S by construction, f̃n = λnPψ. Then ‖Pψ‖2 = 1/λn; hence f̃n =

Pψ/‖Pψ‖2 = ϕ.

Continuing the proof of the theorem, the claim implies that {λn} is a nonincreasing

sequence (hence {Sn} is nondecreasing). Let λ = limλn. Also, {f̃n} is norm-bounded,

so a subsequence converges weakly to a limit f̃ ∈ H. In fact, ‖f̃n − f̃‖ → 0: if

cn = (cn1 , . . . , c
n
n)t, then for l ≥ n,

〈f̃l, f̃n〉 = 〈
l∑

j=0

cljϕj,

n∑
k=0

cnkϕk〉

=
n∑

k=0

cnk〈
l∑

j=0

cljϕj, ϕk〉

=
∑

k

cnkλlbk = λl.
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Therefore

‖f̃n − f̃‖2 = λn − 2 Re〈f̃ , f̃n〉+ 〈f̃ , f̃〉 = λn − 2λ+ λ→ 0.

Let f = f̃−λψ. Then fn → f in norm. For each k, since fn ⊥ ϕk for every n ≥ k,

f ⊥ ϕk. Therefore f ∈ M.

Recall that ψ was chosen so that ψ ⊥ M ⇒ M = {0} (with the converse being

trivial). Since f = f̃ − λψ and f̃ ∈ M⊥, M 6= {0} iff f 6= 0. Since

‖f‖2 = 〈f, f〉 = ‖f̃‖2 − 2 Reλ〈f̃ , ψ〉+ λ2‖ψ‖2

= λ− 2λRe lim
n→∞

〈
n∑

j=1

cjϕj, ψ〉+ λ2‖ψ‖2

= λ− 2λRe lim
n→∞

n∑
j=1

cjbj + λ2‖ψ‖2

= λ− 2λ · 1 + λ2‖ψ‖2 = λ(λ‖ψ‖2 − 1),

λ ≥ 1/‖ψ‖2 and f 6= 0 iff λ > 1/‖ψ‖2. Since λ = 1/ limSn, we have Sn < ‖ψ‖2 and

M 6= {0} iff limSn < ‖ψ‖2.

Remark. Since both the Blaschke condition (Theorem 1.3) and Theorem 1.10 apply

to the Hardy space H2, the condition of Theorem 1.10 must be equivalent to the

Blaschke condition. The author has not been able to prove this directly. If a direct

proof were known, perhaps the methods could be applied in other spaces, transforming

the rather algebraic condition of Theorem 1.10 into a simpler, geometric condition.

In the Bergman space and the Dirichlet space, among other spaces, no geometric

characterization of the zero sets is known.

Remark. The result of Theorem 1.10 overlaps with a result of P. Malliavin [13]. He

gives a characterization of the subsets of D on which a nonzero element of certain

spaces of holomorphic functions can vanish. The characterization is in terms of ca-

pacities defined by extremal problems involving complex measures on D. By applying

Malliavin’s capacity condition to finite sets, his result can be shown to be equivalent

to Theorem 1.10 in the case of sequences of distinct points in D. His result pertains

only to spaces in which the powers of z are orthogonal and have norm at least one,
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among other assumptions. Spaces excluded include the Dirichlet-type spaces D(µ),

where the powers of z are not generally orthogonal, and the Bergman space, where

the norms of the powers of z approach zero. Malliavin’s result also does not consider

zero sets with multiplicities. On the other hand, Theorem 1.10 only applies to subsets

of D; however, see Section 1.4.

1.2 Inner Divisors

Recall that H∞ denotes the space of bounded functions f ∈ H(D), with norm

given by ‖f‖∞ = supz∈D |f(z)|. As shown by P. Fatou [9], if f ∈ H∞ then f has

radial limits at almost every point of ∂D. If the radial limit of u ∈ H∞ satisfies

|u(eiθ)| = 1 for almost all θ, then u is said to be an inner function. Every Blaschke

product is an inner function. If ν is a positive, finite measure on ∂D that is singular

with respect to Lebesgue measure, define S on D by

S(z) = exp

(
−

∫
eiθ + z

eiθ − z
dν(eiθ)

)
.

Then S is an inner function without zeroes in D, known as a singular inner function.

Every inner function u is the product of a Blaschke product and a singular inner

function, where either factor may be constant.

Let H be a Hilbert space of holomorphic functions on D satisfying hypotheses

(1)–(3) defined earlier. Now suppose also that H ⊂ H2, and that ‖ · ‖H ≥ ‖ · ‖H2 .

Let u be an inner function, and let M = uH2 ∩H.

Example 1.12. Suppose H = D(µ), the Dirichlet-type space associated with the

measure µ. Suppose F ∈ H2 and f = uF ∈ M. It follows from the formula in [16]

for the local Dirichlet integral that in fact, F ∈ D(µ). Thus, M consists of those

f ∈ D(µ) having u as a divisor. The general problem of determining which inner

functions u are divisors of a non-zero function in D(µ), or even in D, is unsolved; in

fact, the problem of characterizing the zero sets of D(µ) is the special case where u

is a Blaschke product.
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The problem of determining whether M 6= {0} will now be considered. Assume

that u is not a Blaschke product, that case being covered by the results of Theo-

rem 1.10.

For n ≥ 1, define ϕn ∈ H by 〈g, ϕn〉H = 〈zng, u〉H2 for all g ∈ H. Such a ϕn exists

because it represents a bounded functional on H:

|〈zng, u〉H2| ≤ ‖zng‖H2‖u‖H2 = ‖g‖H2 · 1 ≤ ‖g‖H,

by the assumptions on H. Since u is inner, u(eiθ) = 1/u(eiθ) for almost all θ. Hence,

〈g, ϕn〉H = 〈zng, u〉H2 =

∫
g(eiθ)u(eiθ)einθ dθ

2π
=

(̂
g
u

)
(−n).

If g ∈ M, say g = uF for F ∈ H2, then 〈g, ϕn〉H = F̂ (−n) = 0. Thus ϕn ⊥ M.

Now suppose g ∈ H and g ⊥ {ϕ1, ϕ2, . . .}. Since
(̂

g
u

)
(−n) = 0 for all n ∈ N, it follows

that g
u
∈ H2; hence g ∈ M. Therefore M = {ϕ1, ϕ2, . . .}⊥.

Claim 1.13. The set {ϕ1, ϕ2, . . .} is linearly independent in H.

Proof. Suppose λ1, . . . , λn ∈ C and
∑
λjϕj = 0. Let p(z) =

∑
λjz

j. Then for all

g ∈ H,

〈g,
∑

λjϕj〉H =
∑

λj〈zjg, u〉H2 = 〈pg, u〉H2 = 0.

By choosing g = zn for each n ∈ N, we get that
(̂

p
u

)
(−n) = 0 for all n; hence p

u
∈ H∞

(as a polynomial, p is bounded). Since u is assumed not to be a Blaschke product,

u has a nontrivial singular factor S. Then S is also a factor of p. Since the only

polynomial with a nontrivial singular factor is 0, p = 0. Therefore {ϕ1, ϕ2 . . .} is

linearly independent.

Let m be the largest power of z that divides u. Let ψ = km
0 . Since H ⊂ H2, the

existence of the reproducing kernel km
0 ∈ H follows by the argument in Example 1.8

that showed the existence of reproducing kernels in D(µ). Suppose ψ ⊥ M. If

f = uF ∈ M with F ∈ H2, from f ⊥ ψ follows that F (0) = 0. However, by

assumption (3) about H, the function g defined by g(z) = f(z)/z = u(z)F (z)/z

belongs to M. By replacing f with g and repeating the argument indefinitely, it must

be that F = 0. Thus if ψ ⊥ M, then M = {0}.
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Having defined {ϕ1, ϕ2, . . .} and ψ, define Gn, bn, and Sn as in Section 1.1.

Observe that the only properties of {ϕ1, ϕ2, . . .} and ψ used in the proof of Theo-

rem 1.10 are that M = {ϕ1, ϕ2, . . .}⊥, that {ϕ1, ϕ2, . . .} is linearly independent, and

that ψ ⊥ M iff M = {0}. Therefore, the proof of Theorem 1.10 proves the following:

Theorem 1.14. The subspace M is nontrivial iff limSn < ‖ψ‖2.

This theorem characterizes the inner functions that are H2-divisors of nonzero

elements of H.

1.3 Invariant Subspaces of Dirichlet-type Spaces

A closed subspace M of H will be called invariant if it is invariant under the

operator Mz of multiplication by z; that is, if zM ⊂ M. An important problem is to

characterize the invariant subspaces of H.

Example 1.15. Let H = H2. The invariant subspaces of H2 were characterized by

A. Beurling [4]. He showed that they are precisely the subspaces generated by inner

functions; that is, those of the form uH2, where u is an inner function.

Definition 1.16. A wandering vector of H is an element of H that is orthogonal

to its orbit under Mz; that is, an f ∈ H satisfying 〈f, zkf〉 = 0 for all k ≥ 1. The

wandering subspace of H is H 	 zH.

Example 1.17. Again, let H = H2, and let u be an inner function. Then for

k ≥ 1, 〈u, zku〉 = 〈1, zk〉 = 0. Thus u is a wandering vector of H2. If M = uH2

is the invariant subspace generated by u, then the wandering subspace of M is the

one-dimensional space Cu.

Example 1.18. Let H be the Dirichlet-type space D(µ). The invariant subspaces of

D(µ) have not been characterized for general µ, or even for D = D(dθ/2π) (see

D. Sarason [19] for results when µ is finitely atomic). However, S. Richter and

C. Sundberg [17] have shown that if M is any invariant subspace of D(µ), then

M is generated by its wandering subspace, which is one-dimensional.
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In this respect, the situation of H = D(µ) mirrors that of H = H2: an invari-

ant subspace M is generated by the one-dimensional subspace M 	 zM. Hence, a

characterization of the invariant subspaces is equivalent to a characterization of the

wandering vectors. In H2, the wandering vectors are the inner functions. In D(µ), the

wandering vectors are not completely determined for general µ. An important result

is that wandering vectors of D(µ) are multipliers of D(µ). This fact, trivial in the

H2 case, was proved by Richter and Sundberg [17]. The final part of their argument

is to show that wandering vectors of D(µ) are bounded functions. By refining the

argument, it can be shown that norm-one wandering vectors of D(µ) are contractive

multipliers of D(µ):

Theorem 1.19. Let µ be a positive, finite, Borel measure on ∂D. Let f be a wan-

dering vector of D(µ) of norm one. Then f is a contractive multiplier of D(µ); that

is, ‖fg‖ ≤ ‖g‖ for all g ∈ D(µ).

See Richter and Sundberg [18] for the case of D(µ) = D, Sarason [19] for the case

of µ finitely atomic. The proof below is a modification of that of Theorem 3.1 of [17].

Theorem 1.19 was proved independently by A. Aleman [1].

Proof. As explained in [17], the multiplier norm of f is the maximum of its norm in

D(µ) and its sup-norm. Hence it suffices to show that ‖f‖∞ ≤ 1.

Denote by M the invariant subspace of D(µ) generated by f . Let k be the largest

power of z dividing f . Then each function in M is of the form zkh for some h ∈ D(µ),

and if f = zkg, then
‖f‖µ

|g(0)|
= inf

{
‖zkh‖µ

|h(0)|
: zkh ∈ M

}
. (1.4)

For N ∈ R and h ∈ D(µ) with inner-outer factorization h = uF , define the

cutoff function hN = u(F ∧ eN), where F ∧ eN is the outer function determined

by |(F ∧ eN)(eiθ)| = min{|F (eiθ)|, eN}. By Corollary 2.3 of [17], for all λ ∈ ∂D,

Dλ(hN) ≤ Dλ(h); hence ‖hN‖µ ≤ ‖h‖µ. By Lemma 2.4 of [17], fN = zkgN ∈ M.

Then by (1.4),
‖f‖µ

|g(0)|
≤ ‖fN‖µ

|gN(0)|
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for all N ∈ R. Then for all N ∈ R, ‖f‖2
µ ≤ ‖fN‖2

µ
|g(0)|2
|gN (0)|2 ,

‖f‖2
µ − ‖fN‖2

µ ≤ ‖fN‖2
µ

(
|g(0)|2

|gN(0)|2
− 1

)
≤ |g(0)|2

|gN(0)|2
− 1 (1.5)

since ‖fN‖µ ≤ ‖f‖µ = 1.

Let F be the outer factor of g; let v = log |F |. Since f ∈ H2, v is integrable on

∂D. For N ∈ R let EN = {θ ∈ (−π, π) : v(eiθ) > N}. Since g and gN have the same

inner factor,

log
|g(0)|2

|gN(0)|2
= log

|F (0)|2

|FN(0)|2
= 2(log |F (0)| − log |FN(0)|)

=
1

π

∫ π

−π

(log |F (eiθ)| − log |FN(eiθ)|) dθ

=
1

π

∫
EN

(v(eiθ)−N) dθ.

(1.6)

Since v is integrable,
∫

EN
(v(eiθ) − N) dθ decreases to 0 as N → ∞; hence |g(0)|2

|gN (0)|2

decreases to 1.

Fix N > 0, and suppose that |g(0)|2
|gN (0)|2 > 1. Choose M ≥ N such that |g(0)|2

|gM (0)|2 <

1 + 2(1− e−2N). Then since Dλ(fM) ≤ Dλ(f) for all λ ∈ ∂D,

‖f‖2
µ − ‖fM‖2

µ = ‖f‖2
H2 − ‖fM‖2

H2 +

∫
∂D

(Dλ(f)−Dλ(fM)) dµ(λ)

≥ ‖f‖2
H2 − ‖fM‖2

H2

=

∫
∂D

(|g|2 − |gM |2)

=
1

2π

∫
EM

(e2v(eiθ) − e2M) dθ

= e2M 1

2π

∫
EM

(e2v(eiθ)−2M − 1) dθ.

By equation (1.6) and the estimates ex − 1 ≥ x for all x and log x ≥ (x − 1) −
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(x− 1)2/2 for x ≥ 1,

‖f‖2
µ − ‖fM‖2

µ ≥ e2M 1

2π

∫
EM

2(v(eiθ)−M) dθ

= e2M log
|g(0)|2

|gM(0)|2

≥ e2M

(
|g(0)|2

|gM(0)|2
− 1

)
−

(
|g(0)|2
|gM (0)|2 − 1

)2

2


= e2M

(
|g(0)|2

|gM(0)|2
− 1

) 1−

(
|g(0)|2
|gM (0)|2 − 1

)
2


> e2M

(
|g(0)|2

|gM(0)|2
− 1

)
e−2N

≥ |g(0)|2

|gM(0)|2
− 1,

contradicting (1.5). Therefore |g(0)| = |gN(0)|. By the definition of the cutoff func-

tion, |F (0)| = |FN(0)|. Since F and FN are outer functions,∫
log |F (eiθ)| dθ =

∫
log |FN(eiθ)| dθ;

hence |F (eiθ)| = |FN(eiθ)| almost everywhere. Thus |F (eiθ)| ≤ eN almost everywhere

for all N > 0; therefore ‖f‖∞ = ‖F‖∞ ≤ 1.

Now let H and M be as in Theorem 1.10 or as in Theorem 1.14. Note that

in either case, M is an invariant subspace of H. The construction in the proof of

Theorem 1.10 produces f ∈ M of the form f̃ − λψ , where f̃ ∈ M⊥, λ ∈ C, and

ψ = km
0 is a reproducing kernel at 0. If k ≥ 1, then zkf ∈ M since M is invariant,

and

〈f, zkf〉 = 〈f̃ − λψ, zkf〉 = 0− λ〈ψ, zkf〉 = 0,

since zkf has a zero at z = 0 of multiplicity at least m + k. Thus, f is a wandering

vector of M. Hence if M = D(µ) (or H2), f generates M.
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1.4 Zero Sets in ∂D

In this section, it will be necessary to assume that H = D, the Dirichlet space.

The problem to be considered is that of characterizing the boundary-zero sets of D,

and to produce a generator of each associated invariant subspace ofD. A complication

arises from the fact that radial limits of a function in D need not exist at every point

of ∂D. The following results, respectively of Beurling [3] and L. Carleson [6], help

quantify the extent of the problem:

Theorem 1.20. If f ∈ D, then the radial limit function f(eiθ) = limr→1 f(reiθ) exists

for eiθ outside a set of (outer logarithmic) capacity zero.

However:

Theorem 1.21. If E ⊂ ∂D is a closed set of capacity zero, then there is f ∈ D

having radial limit zero precisely on E.

This suggests regarding sets of capacity zero as negligible sets.

Definition 1.22. A property which holds off a set of capacity zero will be said to

hold quasi-everywhere. A set E ⊂ ∂D is quasi-closed if there are open subsets of ∂D
of arbitrarily small capacity whose complements in E are closed. The set E quasi-

contains the set F if F \E has capacity zero. A function f on ∂D is quasi-continuous

if the restriction of f to ∂D \ U is continuous for open sets U ⊂ ∂D of arbitrarily

small capacity. A quasi-support of a positive measure µ on ∂D is a quasi-closed set

E such that µ(∂D \ E) = 0 and E is “quasi-minimal” with respect to this property;

that is, if F is quasi-closed and µ(∂D \ F ) = 0, then F quasi-contains E.

It will be necessary to use a different capacity, one used by Richter, W. Ross, and

Sundberg [15, page 19]. The definition makes use of the harmonic Dirichlet space:

Recall equation (1.1) for the Dirichlet integral:

D(f) =

∫
D
|f ′|2 dA =

∫
∂D

∫
∂D

∣∣∣∣f(eiθ)− f(eit)

eiθ − eit

∣∣∣∣2 dt2π

dθ

2π
.
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The Dirichlet integral can be defined for harmonic functions, becoming

D(f) =

∫
D

(∣∣∣∣∂f∂z
∣∣∣∣2 +

∣∣∣∣∂f∂z
∣∣∣∣2) dA =

∫
∂D

∫
∂D

∣∣∣∣f(eiθ)− f(eit)

eiθ − eit

∣∣∣∣2 dt2π

dθ

2π
. (1.7)

A harmonic function f on D for which the first integral of (1.7) is finite will have an

almost-everywhere-defined boundary function satisfying (1.7). Conversely, a function

f on ∂D for which the right side of (1.7) is finite can be extended using the Poisson

integral to a harmonic function on D satisfying (1.7).

Define the harmonic Dirichlet space D to be the set of functions on ∂D for which

the Dirichlet integral is finite. Define the norm by

‖f‖2
D = D(f) +

1

2
|f(0)|2.

Define a capacity of a set E ⊂ ∂D by:

cap(E) = inf{‖f‖2
D : f ∈ D, 0 ≤ f ≤ 1, and f = 1 quasi-everywhere on E}. (1.8)

This capacity is comparable to the square of the outer logarithmic capacity (see [15]),

so the properties of Definition 1.22 are the same for the two capacities.

Note that because D ⊂ H2, a function in D having radial limit zero on a set of

positive Lebesgue measure must be the zero function. Hence we let E ⊂ ∂D be a set

of positive capacity and Lebesgue measure zero. Define

N = NE = {f ∈ D : f |E = 0 quasi-everywhere }. (1.9)

Then N is an invariant subspace of D (see [5, p. 295]). The goal of this section is to

determine those E for which NE 6= {0}, and to produce a generator of N.

As shown by B. Fuglede [10], there is a quasi-closed set E∗ that quasi-contains E,

and that is quasi-contained in all quasi-closed sets that quasi-contain E. Such a set

E∗ is known as a quasi-closure of E; note that every set whose symmetric difference

with such an E∗ has capacity zero is also a quasi-closure of E.

Lemma 1.23. If E∗ is a quasi-closure of E, then NE = NE∗.
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Proof. For f ∈ D, let Z(f) be the set of points in ∂D where the radial limit of f is

zero. Suppose f ∈ NE∗ ; then Z(f) quasi-contains E∗. Since cap(E \ E∗) = 0, Z(f)

quasi-contains E. Hence f ∈ NE.

Conversely, suppose f ∈ NE. It is shown by Richter, Ross, and Sundberg [15]

that functions in the harmonic Dirichlet space D are quasi-continuous; hence the

boundary function of f ∈ D is quasi-continuous. Since {0} is closed, it follows that

Z(f) is a quasi-closed set, which quasi-contains E by the assumption on f . Then by

the definition of quasi-closure, Z(f) quasi-contains E∗. Thus f ∈ NE∗ .

Now fix a quasi-closure E∗ of E. Let µ be a positive measure on ∂D such that E∗

is a quasi-support of µ, the functional g 7→
∫
g dµ is bounded on D, and cap(E∗) =

µ(∂D). The existence of such a measure is shown in [15].

Let ν̂(n) denote the Fourier-Stieltjes coefficient
∫
e−inθ dν(eiθ) of a measure ν. Let

gµ be the measure ν such that dν = g dµ. Then for each j ∈ N, the functional

g 7→ (̂gµ)(−j) is bounded on D:

|(̂gµ)(−j)| =
∣∣∣∣∫ g(eiθ)eijθ dµ(eiθ)

∣∣∣∣ ≤ C‖zjg‖D ≤ C‖zjg‖D ≤ C‖Mz‖j‖g‖D,

since the multiplication operator Mz is bounded on D. Let ϕj ∈ D represent this

functional; explicitly, ϕj(z) =
∑∞

n=0
µ̂(n+j)

n+1
zn. In order to use the construction of

Theorem 1.10, it must be shown that Φ = {ϕj : j ∈ N} is linearly independent and

that Φ⊥ = N.

Lemma 1.24. Φ is linearly independent in D.

Proof. Suppose
∑n

j=1 λjϕj = 0. Let p(z) =
∑
λjz

j. Then for g ∈ D,

0 = 〈g,
∑

λjϕj〉 =
∑

λj

∫
g(eiθ)eijθ dµ(eiθ) =

∫
gp dµ. (1.10)

Choosing g(z) = zn for each n ∈ N, from (1.10) we conclude that the measure pµ

is absolutely continuous with respect to Lebesgue measure, by the F. and M. Riesz

Theorem. However, since µ is supported on a set of Lebesgue measure zero, pµ is the

zero measure. Therefore p = 0 [µ]-almost everywhere. Since p has at most n zeroes

and finite sets have capacity zero, p must be the zero polynomial. Therefore Φ is

linearly independent.
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Now suppose g ⊥ Φ. Then gµ is the zero measure, so g = 0 [µ]-almost everywhere.

As above, Z(g) is quasi-closed. Since µ(∂D \ Z(g)) = 0 and E∗ is a quasi-support of

µ, Z(g) quasi-contains E∗. Thus g ∈ NE∗ = N.

Let ψ = 1 = k0
0; as before, if ψ ⊥ N then N = {0}. The proof of Theorem 1.10

may now be applied to prove the following:

Theorem 1.25. N 6= {0} iff limSn < 1.

The construction also produces a wandering vector and generator of N.

In the case of the Dirichlet space D, the construction of Theorem 1.10 has pro-

duced a generator of all invariant subspaces determined by a zero set in D, or more

generally by an inner function, and those determined by a zero set in ∂D. Another

type of invariant subspace is an intersection of two invariant subspaces, one of each

type. Suppose M = uH2∩D for some inner function u and N = NE for some E ⊂ ∂D
of positive capacity and Lebesgue measure zero. Let Φ1, Φ2 be linearly independent

subsets of H such that Φ⊥
1 = M and Φ⊥

2 = N, as defined above. Let Φ = Φ1 ∪ Φ2.

Then Φ⊥ = M ∩ N. That Φ is linearly independent follows from the fact that an

inner product with an element of Φ1 is an integral with respect to an absolutely con-

tinuous measure, while an inner product with an element of Φ2 is an integral with

respect to a singular measure, and no nontrivial linear combination of an absolutely

continuous measure and a singular measure can be zero. As before, ψ = 1 gives

ψ ⊥ (M∩N) ⇒ M∩N = {0}. Then the proof of Theorem 1.10 produces a generator

of M ∩N, as well as a necessary and sufficient condition for M ∩N to be nontrivial.

Richter and Sundberg [17] have shown that every invariant subspace of D is of

the form uH2 ∩ N, where u is an inner function and N contains an outer function.

It has been conjectured that any such N is of the form NE as in (1.9), for some E.

In light of Richter and Sundberg’s results, this conjecture can be reformulated to say

that the above constructions produce all wandering vectors of D.
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Chapter 2

Toeplitz Operators on

Dirichlet-type Spaces

In this chapter, we study operators of the type f 7→ P (ϕf) on Dirichlet-type spaces

D(µ) (see Example 1.8), where ϕ is a function on D or ∂D and P is a projection.

These operators are variants of the classical Toeplitz operators on H2, and will be

referred to as Toeplitz operators. The function ϕ is called the symbol of the operator

f 7→ P (ϕf), which will be denoted Tϕ.

The properties of a Toeplitz operator can depend both on its symbol and on

the projection P used in the definition of the operator. There are several possible

projections that can be used to define Toeplitz operators on D(µ).

Example 2.1. Let L2
a be the Bergman space, a subspace of L2(D). Let PB be the

orthogonal projection of L2(D) onto L2
a, known as the Bergman projection. It can be

expressed as an integral operator, or in terms of reproducing kernels:

(PBf)(z) =

∫
f(w)

1

(1− zw)2
dA(w) = 〈f, kB

z 〉L2(D), (2.1)

where dA denotes normalized Lebesgue measure on D.

If ϕ is a function on D such that ϕD(µ) ⊂ L2(D), then a Toeplitz operator Tϕ can

be defined on D(µ) by Tϕf = PB(ϕf).

Example 2.2. The Hardy space H2 can be identified with a subspace of L2(∂D),

with radial limits transforming an H2 function on D to its boundary function, and
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the Poisson integral doing the reverse. The orthogonal projection of L2(∂D) onto

H2(D) is known as the Szegö projection, and will be denoted PH . Like PB, the Szegö

projection can be expressed as an integral operator or in terms of reproducing kernels:

(PHf)(z) =

∫
f(eiθ)

1

1− ze−iθ

dθ

2π
= 〈f, kH2

z 〉L2(∂D).

Since D(µ) ⊂ H2, every element of D(µ) has a boundary function defined almost

everywhere on ∂D. Then if ϕ is a function on ∂D such that ϕD(µ) ⊂ L2(∂D), a

Toeplitz operator Tϕ can be defined on D(µ) by Tϕf = PH(ϕf).

Before proceeding with the next example, a harmonic analogue of D(µ) will be

defined.

In the sequel, if ν is a measure on ∂D, then Pν denotes the Poisson integral of ν,

the integral with respect to ν of the Poisson kernel: (Pν)(z) =
∫ 1−|z|2

|z−λ|2 dν(λ). Note

that the Poisson kernel itself is the Poisson integral of the point mass δλ. If g is a

function on ∂D, then Pg denotes the Poisson integral of the measure g dθ
2π

.

If λ ∈ ∂D and δλ denotes the point mass at λ, then from the definitions in

Examples 1.7 and 1.8 it follows that f ∈ D(δλ) iff f has a finite local Dirichlet

integral at λ. The following criterion of Richter and Sundberg [16] for Dλ(f) to be

finite will be useful:

Proposition 2.3. Let λ ∈ ∂D. Then a function f ∈ D(δλ) iff f = α+ (z − λ)fλ for

some constant α and function fλ ∈ H2. If this is the case, then α is the radial limit

f(λ) of f at λ, and Dλ(f) = ‖fλ‖2
2.

Remark. It is shown in [16] that in fact, if f ∈ D(δλ) then f(z) → f(λ) as z approaches

λ within any disc tangent to ∂D at λ. Also, P. Chernoff [7] has shown that if Dλ(f) <

∞, then the Fourier series of f at λ converges to f(λ).

Corollary 2.4. D(µ) ⊂ H2.

Proof. Let f ∈ D(µ). Since
∫
Dλ(f) dµ(λ) is finite, there is at least one λ such that

f ∈ D(δλ). For any such λ, by the proposition there are α ∈ C and fλ ∈ H2 such

that f = α+ (z − λ)fλ. Therefore f ∈ H2.
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The following analogue of the Douglas formula (1.1) for the Dirichlet integral will

be used, and is proved by Richter and Sundberg in [16].

Proposition 2.5. If f ∈ H2, then∫
∂D
Dλ(f) dµ(λ) =

∫
D
|f ′|2PµdA. (2.2)

Like the Douglas formula, equation (2.2) can be extended to harmonic functions.

Proposition 2.6. Let f be a harmonic function on D of the form f = f+ +f−, where

f+, f− ∈ D(µ) and f−(0) = 0. Then∫
∂D
Dλ(f) dµ(λ) =

∫
D

(∣∣∣∣∂f∂z
∣∣∣∣2 +

∣∣∣∣∂f∂z
∣∣∣∣2)PµdA =

∫
D
(|f ′+|2 + |f−

′|2)PµdA. (2.3)

Proof. For λ ∈ ∂D and functions g, h ∈ D(δλ), define

Dλ(g, h) =

∫
∂D

g(λ)− g(eit)

λ− eit

(
h(λ)− h(eit)

λ− eit

)
dt

2π
.

Then Dλ(·, ·) is a sesquilinear form, and Dλ(g) = Dλ(g, g). Hence

Dλ(f) = Dλ(f+ + f−, f+ + f−) = Dλ(f+) + 2 ReDλ(f+, f−) +Dλ(f−). (2.4)

Since Dλ(f−) = Dλ(f−), the proposition will follow by integrating (2.4) with respect

to µ and applying Proposition 2.5, once it is shown that Dλ(f+, f−) = 0 for [µ]-almost

every λ.

Since f+, f− ∈ D(µ), both belong to D(δλ) for [µ]-almost every λ; fix such a

λ. By Proposition 2.3, choose g+, g− ∈ H2 such that f+ = f+(λ) + (z − λ)g+ and

f− = f−(λ) + (z − λ)g−. Then

Dλ(f+, f−) =

∫
∂D

f+(λ)− f+(eit)

λ− eit

(
f−(λ)− f−(eit)

λ− eit

)
dt

2π

=

∫
∂D

f+(λ)− f+(eit)

λ− eit

f−(λ)− f−(eit)

λ− eit

λ− eit

λ− e−it

dt

2π

=

∫
∂D
g+(eit)g−(eit)(−λeit)

dt

2π

= 0.
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Define the harmonic Dirichlet-type space D(µ) to be the set of functions f ∈
L2(∂D) such that Dλ(f) is integrable with respect to µ. For such an f , the harmonic

extension f(z) = (Pf)(z) to D satisfies (2.3); in the usual way, elements of D(µ) can

be regarded as functions on ∂D or as functions on D. Define the norm by ‖f‖2 =∫
Dλ(f) dµ(λ) + ‖f‖2

L2(∂D).

Proposition 2.7. D(µ) is a reproducing-kernel Hilbert space containing D(µ) as a

closed subspace.

Proof. Suppose f ∈ D(µ); write f = f+ + f−, with f+, f− ∈ D(µ) and f−(0) = 0. If

w ∈ D, then by the existence of H2 reproducing kernels,

|f(w)| = |f+(w) + f−(w)| ≤ |f+(w)|+ |f−(w)|

≤ ‖kH2

w ‖H2(‖f+‖H2 + ‖f−‖H2) ≤ C‖f‖L2(∂D)

≤ C‖f‖D(µ).

Thus, the functional of evaluation at w is bounded on D(µ), as was to be proved.

Similarly, for k ∈ N

|f̂(−k)| = |f̂−(−k)| = |f̂−(k)| = |f−
(k)

(0)|/k! ≤ C‖f−‖H2 ≤ C‖f‖D(µ).

Therefore if {fn} is a sequence in D(µ) converging in D(µ) to f , then f̂(−k) = 0 for

all k ∈ N. Thus D(µ) is closed in D(µ).

Example 2.8. If ϕ is a function on ∂D such that ϕD(µ) ⊂ D(µ), then a Toeplitz

operator Tϕ can be defined on D(µ) by Tϕf = Pµ(ϕf), where Pµ is the orthogonal

projection of D(µ) onto D(µ).

There are advantages to using each of the projections in Examples 2.1, 2.2, and 2.8.

The Bergman projection can be used for the largest collection of symbols, as the

requirement that ϕD(µ) ⊂ L2(∂D) is the weakest requirement among the three.

Using the Szegö projection has the advantage of giving rise to the best-understood

sort of Toeplitz operator. The theory of Toeplitz operators is most often studied in

settings where the range of the projection is the domain of the operator; such is the

case if P = Pµ.
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2.1 Bergman Toeplitz Operators on D

The problem to be studied in this section is to determine the symbols ϕ for which

the Toeplitz operator Tϕf = PB(ϕf) is bounded on D. It will be assumed that ϕ is

a bounded, harmonic function on D.

The Bergman projection is one of a family of projections of L2(D) onto L2
a. For

α > −1, define the operator Pα by:

(Pαf)(z) = (α+ 1)

∫
(1− |w|2)α

(1− zw)α+2
f(w) dA(w).

Clearly P0 = PB. If 1 ≤ p <∞ and p(α + 1) > 1, then Pα is bounded on Lp(D) and

fixes the holomorphic functions in Lp(D), as shown in [22, section 4.2].

The main result of this section hinges on the following lemma.

Lemma 2.9. For f ∈ D, (Tϕf)′ = ∂ϕ
∂z
f + P1(ϕf

′).

Note that if ∂ϕ
∂z
f ∈ L2(D), then the right side of the equation is P1

(
∂
∂z

(ϕf)
)
. Thus

the lemma says that in a restricted sense, differentiation intertwines PB and P1.

Proof. First, the lemma will be verified in the case of ϕ(z) = zm and f(z) = zn:

(Tϕf)(z) = PB(ϕf)(z) =

∫
wmwn

(1− zw)2
dA(w)

=
1

π

∫ 2π

0

∫ 1

0

rme−imθrneinθ

(1− zre−iθ)2
r dr dθ

=
1

π

∫ 1

0

rm+n+1

∫ 2π

0

ei(n−m+2)θ

(eiθ − rz)2
dθ dr

=
1

πi

∫ 1

0

rm+n+1

∫
∂D

ζn−m+1

(ζ − rz)2
dζ dr.

A residue calculation shows that the contour integral
∫

∂D
ζn−m+1

(ζ−rz)2
dζ is zero if n−m+1 ≤

0, and is otherwise 2πi(n−m+ 1)(rz)n−m. Hence

(Tϕf)(z) = 2(n−m+ 1)zn−m

∫
r2n+1 dr =

n−m+ 1

n+ 1
zn−m (2.5)

if n−m ≥ 0 and zero otherwise.
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The derivative of Tϕf(z) is to be compared with:

P1(ϕf
′)(z) = 2

∫
1− |w|2

(1− zw)3
nwmwn−1 dA(w)

=
2n

πi

∫ 1

0

(1− r2)rm+n

∫
∂D

ζn−m+1

(ζ − rz)3
dζ dr.

Since
∫

∂D
ζn−m+1

(ζ−rz)3
dζ = πi(n − m + 1)(n − m)(rz)n−m−1 if n − m ≥ 1 and is zero

otherwise,

P1(ϕf
′)(z) = 2n(n−m+ 1)(n−m)zn−m−1

∫
(r2n−1 − r2n+1) dr

=
(n−m+ 1)(n−m)

n+ 1
zn−m−1

for n−m ≥ 1 and is otherwise zero. Comparing this with the derivative of the right

side of (2.5), we see that the lemma holds in this case.

Now let ϕ be any bounded, harmonic function on D, and f any element of D.

Define ϕ+ by ϕ+(z) =
∑∞

n=0 ϕ̂(n)zn; let ϕ− = ϕ − ϕ+. Both ϕ+ and ϕ− belong to

L2(D), but they need not be bounded functions.

Since ϕ is bounded and f ∈ D ⊂ L2, the sum ϕ
∑
f̂(n)zn converges in L2 norm.

Then since PB is bounded on L2,

PB(ϕf) =
∑

f̂(n)PB(ϕzn) =
∑

f̂(n)(ϕ+z
n + PB(ϕ−z

n))

= ϕ+f +
∞∑

n=0

f̂(n)
∞∑

m=1

ϕ̂(−m)PB(zmzn).

Since ϕ is harmonic, ϕ′+ = ∂ϕ
∂z

; hence

PB(ϕf)′ =
∂ϕ

∂z
f + ϕ+f

′ +
∞∑

n=0

f̂(n)
∞∑

m=1

ϕ̂(−m)PB(zmzn)′. (2.6)

Similarly,

P1(ϕf
′) =

∑
nf̂(n)P1(z

n−1ϕ)

=
∞∑

n=1

nf̂(n)(zn−1ϕ+ +
∞∑

m=1

ϕ̂(−m)P1(z
mzn−1))

= ϕ+f
′ +

∞∑
n=1

f̂(n)
∞∑

m=1

ϕ̂(−m)P1(nz
mzn−1).

(2.7)
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Since PB(zmzn)′ = P1(nz
mzn−1) for each m and n, the lemma follows by compar-

ing (2.7) with (2.6), and observing that the n = 0 term of the sum in (2.6) is zero,

since PB(zm) = 0 for all m ≥ 1.

Theorem 2.10. The Toeplitz operator Tϕ is bounded on D iff∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA ≤ C‖f‖2

D (2.8)

for all f ∈ D, for some constant C not depending on f .

Proof. Suppose that (2.8) holds. Then since P1 is bounded on L2 and ϕ is a bounded

function,

D(Tϕf) =

∫
|(Tϕf)′|2 dA =

∫ ∣∣∣∣∂ϕ∂z f + P1(ϕf
′)

∣∣∣∣2 dA
≤ 2

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA+ 2‖P1‖2‖ϕ‖2

∞‖f ′‖2
L2

≤ 2(C + ‖P1‖2‖ϕ‖2
∞)‖f‖2

D.

Also,

|(Tϕf)(0)| =
∣∣∣∣∫ ϕf dA

∣∣∣∣ ≤ ‖ϕ‖∞‖f‖L2 ≤ ‖ϕ‖∞‖f‖D.

Since

‖Tϕf‖2
H2 ≤ |(Tϕf)(0)|2 +D(Tϕf),

it follows that Tϕ is bounded on D.

Conversely, suppose that Tϕ is bounded. Then by the lemma,∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA ≤ 2‖(Tϕf)′‖2

2 + 2‖P1(ϕf
′)‖2

2

≤ 2‖Tϕf‖2
D + 2‖P1‖2‖ϕ‖2

∞‖f ′‖2
2

≤ 2‖Tϕ‖2‖f‖2
D + 2‖P1‖2‖ϕ‖2

∞‖f‖2
D

= C‖f‖2
D.
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The condition of Theorem 2.10 is equivalent to that of ∂ϕ
∂z

being a multiplier of D

into L2
a; that is, ∂ϕ

∂z
D ⊂ L2

a. The condition also says that
∣∣∂ϕ

∂z

∣∣2 dA is a D-Carleson

measure on D. Compare with the following theorem of D. Stegenga [21]:

Theorem 2.11. A function g is a multiplier of D (into itself) iff g ∈ H∞ and |g′|2 dA
is a D-Carleson measure.

Stegenga also gives a geometric characterization of D-Carleson measures in [21].

Since ∂ϕ
∂z

= ϕ′+, from Theorems 2.10 and 2.11 it follows that if Tϕ is bounded on

D and ϕ+ is a bounded function, then ϕ+ is a multiplier of D. However, it is possible

for Tϕ to be bounded without ϕ+ being bounded:

Example 2.12. Define the function g on D by g(z) =
∑

zn

n log n log log n
. Since∑

n|ĝ(n)|2 is finite, g ∈ D. Since D ⊂ BMOA, the space of analytic functions

having bounded mean oscillation on ∂D (see [20]), it follows from Fefferman’s Theo-

rem that we can choose a bounded, harmonic function ϕ such that g = PBϕ = ϕ+.

Since g is unbounded, ϕ+ is not a multiplier of D. However, by a result of S. Axler

and A. Shields [2], g′ is a multiplier of D into L2
a. Therefore Tϕ is bounded on D.

2.2 Hardy Toeplitz Operators on D(µ)

Let µ be a positive, finite Borel measure on ∂D. In this section, the symbols

ϕ ∈ L∞(∂D) for which the Toeplitz operator Tϕf = PH(ϕf) is bounded on D(µ) will

be determined.

Remark. Recall that ‖f‖2
µ = ‖f‖2

2+
∫
Dλ(f) dµ(λ). Since the projection PH has norm

one as an operator on L2(∂D),

‖Tϕf‖2 = ‖PH(ϕf)‖2 ≤ ‖ϕf‖2 ≤ ‖ϕ‖L∞(∂D)‖f‖2 ≤ ‖ϕ‖∞‖f‖µ.

Therefore Tϕ is bounded on D(µ) iff
∫
Dλ(Tϕf) dµ(λ) ≤ C‖f‖2

µ for f ∈ D(µ) and

some C not depending on f .

Fix f ∈ D(µ). Then Dλ(f) < ∞ for [µ]-almost every λ ∈ ∂D. For each such λ

define fλ ∈ H2 as in Proposition 2.3.
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Lemma 2.13.
∫
Dλ(Tϕ((z − λ)fλ)) dµ(λ) ≤ ‖ϕ‖2

∞‖f‖2
µ.

Proof. The result hinges on a commutation relation obtained by following

Tϕ((z − λ)fλ) by Tz, and using composition properties of H2 Toeplitz operators:

TzTϕ((z − λ)fλ) = TzTϕTz−λfλ

= Tzϕ(z−λ)fλ

= T(1−zλ)ϕfλ

= Tz(z − λ)Tϕfλ.

Subtracting the end from the beginning, we see that if g = Tϕ((z−λ)fλ)−(z−λ)Tϕfλ,

then Tzg = 0. Since

Tzg = PH

(
e−iθ

∞∑
n=0

ĝ(n)einθ

)
= PH

( ∞∑
n=−1

ĝ(n+ 1)einθ

)
=

∞∑
n=0

ĝ(n+ 1)einθ = 0,

it follows that ĝ(n+ 1) = 0 for all n ≥ 0. Thus g is constant, say with constant value

α. Hence

Tϕ((z − λ)fλ) = α+ (z − λ)Tϕfλ.

Then by Proposition 2.3, Tϕ((z − λ)fλ) ∈ D(δλ), and

Dλ(Tϕ((z − λ)fλ)) = ‖Tϕfλ‖2
2 ≤ ‖ϕ‖2

∞‖fλ‖2
2 = ‖ϕ‖2

∞Dλ(f).

Therefore∫
Dλ(Tϕ((z − λ)fλ)) dµ(λ) ≤ ‖ϕ‖2

∞

∫
Dλ(f) dµ(λ) ≤ ‖ϕ‖2

∞‖f‖2
µ.

Remark. For each λ ∈ ∂D, Dλ(·)1/2 is a seminorm on D(δλ), and hence satisfies the

triangle inequality. Thus it follows from the lemma and the previous remark that Tϕ

is bounded on D(µ) iff
∫
Dλ(Tϕ(f(λ))) dµ(λ) ≤ C‖f‖2

µ, for some C not depending on

f .

Theorem 2.14. Tϕ is bounded on D(µ) iff∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 P (|f |2µ) dA ≤ C‖f‖2

µ,

for f ∈ D(µ) and some constant C not depending on f .
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If ϕ satisfies the condition of the theorem, the measure
∣∣∂ϕ

∂z

∣∣2 dA will be called a

µ-Carleson measure.

Proof. Following the previous remark, we fix λ ∈ ∂D and calculate the local Dirichlet

integral at λ of Tϕ(f(λ)):

Dλ(Tϕ(f(λ))) =

∫
Dζ(Tϕ(f(λ))) dδλ(ζ)

=

∫
|(PH(ϕf(λ)))′|2Pδλ dA

= |f(λ)|2
∫ ∣∣∣∣∂ϕ∂z

∣∣∣∣2 Pδλ dA,
where the last occurrence of ϕ denotes the harmonic extension of ϕ to D.

Integrating with respect to µ gives∫
Dλ(Tϕ(f(λ))) dµ(λ) =

∫
|f(λ)|2

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 1− |z|2

|z − λ|2
dA(z) dµ(λ)

=

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 ∫

|f(λ)|2 1− |z|2

|z − λ|2
dµ(λ) dA(z)

=

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 P (|f |2µ) dA.

The theorem now follows from the previous remark.

In the case of the Dirichlet space D = D( dθ
2π

), the theorem says that the Hardy

Toeplitz operator Tϕ is bounded on D iff∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 P (|f |2) dA ≤ C‖f‖2

D. (2.9)

Compare this with Theorem 2.10, which says that the Bergman Toeplitz operator Tϕ

is bounded on D iff ∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA ≤ C‖f‖2

D. (2.10)

However,

‖|f |2 − P (|f |2)‖∞ ≤ C1‖f‖2
BMO ≤ C2‖f‖2

D,

the first inequality being due to A. Garsia (see [12, p. 221]), the second to Ste-

genga [20]. Therefore the two conditions (2.9) and (2.10) are equivalent.
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Stegenga’s Theorem 2.11 characterizing the multipliers of D can be generalized

to the harmonic Dirichlet-type space D(µ):

Theorem 2.15. A bounded function ϕ on ∂D is a multiplier of D(µ) iff
∣∣∂ϕ

∂z

∣∣2 dA and∣∣∂ϕ
∂z

∣∣2 dA are µ-Carleson measures.

Proof. Suppose that ϕ is a multiplier of D(µ). By the existence of reproducing kernels

in D(µ), norm convergence of sequences in D(µ) implies pointwise convergence. By

the Cauchy-Schwarz inequality, if f ∈ D(µ) then |P (ϕf)|2 ≤ P |ϕ|2 · P |f |2. It then

follows from the closed-graph theorem that the operator Mϕ of multiplication by ϕ

is bounded on D(µ).

Let f ∈ D(µ). Then

ϕ(λ)f(λ)− ϕ(eit)f(eit)

λ− eit
= f(λ)

ϕ(λ)− ϕ(eit)

λ− eit
+ ϕ(eit)

f(λ)− f(eit)

λ− eit
. (2.11)

Hence ∫
|f(λ)|2Dλ(ϕ) dµ(λ) ≤ 2‖ϕ‖2

∞

∫
Dλ(f) dµ(λ) + 2

∫
Dλ(ϕf) dµ(λ)

≤ 2(‖ϕ‖2
∞ + ‖Mϕ‖2)‖f‖2

D(µ).

Since ϕ = ϕ · 1 ∈ D(µ), by Proposition 2.6∫
|f(λ)|2Dλ(ϕ) dµ(λ) =

∫
|f(λ)|2

∫
D

(∣∣∣∣∂ϕ∂z
∣∣∣∣2 +

∣∣∣∣∂ϕ∂z
∣∣∣∣2)Pδλ dA(z) dµ(λ)

=

∫ (∣∣∣∣∂ϕ∂z
∣∣∣∣2 +

∣∣∣∣∂ϕ∂z
∣∣∣∣2)P (|f |2µ) dA.

Therefore
∣∣∂ϕ

∂z

∣∣2 dA and
∣∣∂ϕ

∂z

∣∣2 dA are µ-Carleson measures.

Conversely, suppose that
∣∣∂ϕ

∂z

∣∣2 dA and
∣∣∂ϕ

∂z

∣∣2 dA are µ-Carleson measures. Since
∂ϕ
∂z

= ϕ′+ and ∂ϕ
∂z

= ϕ−
′, applying the µ-Carleson condition with f = 1 gives that

ϕ+, ϕ− ∈ D(µ). Thus ϕ ∈ D(µ). Then by (2.11) and Proposition 2.6,∫
Dλ(ϕf) dµ(λ) ≤ 2

∫
|f(λ)|2Dλ(ϕ) dµ(λ) + 2‖ϕ‖2

∞

∫
Dλ(f) dµ(λ)

=

∫ (∣∣∣∣∂ϕ∂z
∣∣∣∣2 +

∣∣∣∣∂ϕ∂z
∣∣∣∣2)P (|f |2µ) dA+ 2‖ϕ‖2

∞

∫
Dλ(f) dµ(λ)

≤ C‖f‖2
D(µ).

Therefore ϕ is a multiplier of D(µ).
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Corollary 2.16. A holomorphic function ϕ on D is a multiplier of D(µ) iff ϕ is

bounded and |ϕ′|2 dA is a µ-Carleson measure.

Proof. Suppose ϕ is a multiplier of D(µ). That |ϕ′|2 dA is a µ-Carleson measure

follows as in the proof of the theorem, with D(µ) replaced with D(µ), and noting

that ∂ϕ
∂z

= 0. That ϕ is bounded follows from the existence of reproducing kernels in

D(µ): as above, Mϕ is bounded on D(µ). Then

|ϕ(w)|‖kw‖2 = |ϕ(w)kw(w)| = |〈ϕkw, kw〉| ≤ ‖ϕkw‖‖kw‖ ≤ ‖Mϕ‖‖kw‖2;

thus |ϕ| is bounded by ‖Mϕ‖ on D.

If ϕ is bounded and |ϕ′|2 dA is a µ-Carleson measure, then since ∂ϕ
∂z

= 0 and

ϕ′ = ∂ϕ
∂z

, the theorem gives that ϕ is a multiplier of D(µ). Since ϕ is holomorphic, ϕ

is a multiplier of D(µ).

The following connection between bounded Toeplitz operators and multipliers of

D(µ) is an immediate consequence of Theorems 2.14 and 2.15.

Corollary 2.17. A function ϕ ∈ L∞(∂D) is a multiplier of D(µ) iff Tϕ and Tϕ are

bounded on D(µ).
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